

Introduction

Capturing consumer surplus	Price discrimination
* We will examine pricing techniques of capturing consumer	
surplus and transferring it to the producer	
* We need to find a way to charge consumers according to	
their willingness to pay	
Raising price will push away some consumers, leading to	
smaller profits	
Lowering price will attract some consumers, but lower	
profits.	

Who should be served?	Price discrimination
Only A is served	
What about B?	
If both \mathbf{A} and \mathbf{B} are served in different prices the firm will capture more consumer surplus	

First degree price discrimination
* Perfect PD: Charge each consumer the maximum price they are willing to pay
* MR curve is no longer part of output decision
* This way consumer looses all its surplus to the producer
* What happens to efficiency?

| Perfect price discrimination | |
| :---: | :---: | :---: |
| Price | |

First-degree PD		
Can it really work?		
* In practice, perfect price discrimination is almost never possible - It is impractical to charge every customer a different price (unless very few customers) - Firms usually do not know reservation price of each customer * However, firms can discriminate imperfectly - Can charge a few different prices based on some estimates of reservation prices.		
© 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 6	9

First-degree PD		
Some good cases		
Examples of imperfect price discrimination where the seller has the ability to segregate the market to some extent and charge different prices for the same product: - Car salespersons - Colleges and universities - Lawyers, accountants .		
- 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 6	10

\qquad Imperfect first-degree PD		
Imperfect first-degree PD		
Price	Six prices ex in higher profits price $\mathrm{P}_{4}{ }_{4}$, the consu	ist resulting With a single re are fewer mers
$\begin{aligned} & P_{1} \\ & P_{2} \\ & P_{3} \\ & P_{4}^{*} \\ & P_{5} \end{aligned}$		Discriminating up to P_{6} (competitive price) will increase profits
	Quantity	
Q 2013-18 Kosmas Marinakis, HSE		11

Third-degree price discrimination

* Practice of dividing consumers into two or more groups and charging different prices to each group
* Each group should have different willingness to pay each group has its own demand function
* Typically, elasticity of demand differ for the groups college students and senior citizens are not usually willing to pay as much as others because of lower incomes.

| Consumer groups |
| :--- | :--- |
| * The members of each group should be identifiable |
| * Some characteristic is used to divide the consumer |
| groups |
| ID, gender, age etc. |
| * There should not be arbitrage |
| * It is the most common type of price discrimination |
| * Examples: colleges, various discounts to students and |
| senior citizens, frozen vs. canned vegetables, premium vs. |
| non-premium liquor, |
| e 2013-18 Kosmas marinakis, HSE |

Creating consumer groups
* If third-degree price discrimination is feasible, how can the firm decide what to charge each group of consumers? Total output should be divided between groups so that MR for each group is equal
Total output is chosen so that MR for each group of
consumers is equal to the MC of production.

Algebraically	Third-degree PD
* p_{1}, p_{2} price in the first and second group	
* Quantities: Q_{1}, Q_{2}	
* Total cost of producing output, $C\left(Q_{1}+Q_{2}\right)$	
* Profit: $\Pi=p_{1} \cdot Q_{1}+p_{2} \cdot Q_{2}-C\left(Q_{1}+Q_{2}\right)$	
* Maximize wrt Q_{1}	
$\frac{\partial \Pi}{\partial Q_{1}}=M R_{1}-M C=0 \Rightarrow M R_{1}=M C$.	
© 2013-18 Kosmas Marinakis, HSE	

Equilibrium conditions
* First group of consumers $M R_{1}=M C$
* Can do the same thing for the second group of consumers
$M R_{2}=M C$
* Combining these equalities yields
$M R_{1}=M R_{2}=M C$.

Determining relative prices
* Relative prices charged to each group of consumers are related to ε_{d} for each group * We have shown previously that
$M R=p\left(1+\frac{1}{\varepsilon_{d}}\right)$
M Thus,
$M R_{1}=M R_{2} \Rightarrow p_{1}\left(1+\frac{1}{\varepsilon_{1}}\right)=p_{2}\left(1+\frac{1}{\varepsilon_{2}}\right)$
Third-degree PD
© 2013-18 Kosmas Marinakis, HSE

| Price ratio |
| :--- | :--- |
| * The previous equation can be manipulated to yield the
 relative price ratio |
| $\qquad \frac{p_{1}}{p_{2}}=\left(1+\frac{1}{\varepsilon_{2}}\right) /\left(1+\frac{1}{\varepsilon_{1}}\right)$ |
| * The higher price will be charged to consumer with the PD |
| lower demand elasticity. |

Third-degree price discrimination

Exclusion of smaller market
* Even if third-degree price discrimination is possible, it may not be profitable to try to sell to both groups it is possible that the demand for one group is so low that it would not be profitable to lower price enough to sell to that group.
O2013-18 Kosmas Marinakis, HSE

Exclusion - graph

WARNING

This printout is provided as a courtesy, so that lecture time can be dedicated to note taking. These slides are not standalone material and should be used strictly as reference, side by side with notes taken in the lecture. Studying solely from the slides is not recommended and might in some cases mislead those who have not attended the relevant lecture. Less than 5% of tasks in tests and exams can be answered from the slides.

