

Second-degree PD Quantity discounts		
Reverse quantity discounts		
* In some rare insta costs cheaper th examples: Merci * This is because f	buying se ying the s olates, bou quets of r 15) $<u(1$	
O 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 7	5

$$
\begin{aligned}
& \text { Second-degree price discrimination } \\
& \hline \text { * Under the second-degree price discrimination the firm } \\
& \text { offers different versions of the product } \\
& \text { * Again groups of consumers are formed } \\
& \text { according to quantity, quality, variety etc. } \\
& \text { * Consumers now self-select which consumer group they } \\
& \text { will join } \\
& \text { grouping should be clever so that consumers reveal their real } \\
& \text { willingness to pay with their choice of group } \\
& \text { * We will see several different methods of this kind of self- } \\
& \text { selection discrimination. } \\
& \text { © 2013-18 kosmas Marinakis, H5E }
\end{aligned}
$$

Block pricing
* Block pricing is another way of second-degree PD
* The seller charges different prices for different blocks of
quantities of the good
* Examples
\& Electric company pricing per Kw/h
8 first dance lessons for 2400 , next 8 lessons for 2700
* Block pricing is profit maximizing
consumers at the high blocks have more inelastic demand
* Block pricing is also effective in saving resources
o 2013-18 Kosmas marinakis, HsE

Coupons and rebates
* Coupons and rebates are used by consumers who exhibit
lower willingness to pay for the product
consumers who are more price elastic
* Their use involves costs
cost of effort, time, hassle, social cost
* Coupons and rebate programs allow firms to exercise
second degree price discrimination.

Second-degree PD coupons and rebates		
The economics of coupons and rebates		
* Several consume	\boldsymbol{n} to use coun	
* Most forget, bec through	azy or fail to	
* In the end, only 2	\%\% of cons	
* Firms can get tho purchase a good	h higher el vould not	
Q 2013-18 Kosmas Marinakis, HSE	m2- Lecture 7	8

Second-degree PD Coupons and rebates		
Users vs. non-users of coupons		
Product	Non-Users	Users
Toilet paper	-0.6	-0.7
Shampoo	-0.8	-1.3
Cat food	-0.5	-1.1
Hot dogs	-0.6	-0.8
Cooking oil	-1.2	-1.3 Eremer
		Elasticity of demand is lower for nonusers of coupons and rebates
© 2013-18 Kosmas Marinakis, HSE	m2-Lecture 7	$\stackrel{-}{9}$

Intertemporal price discrimination
* Consumers are grouped according to their time
preference in consuming the product
Enthusiasts: Inelastic demand - they need the product ASAP
Usual consumers: More elastic demand - they can wait for
price to go down
1. Firm releases the product and initially charges a high
price to target enthusiasts
2. Once this market has yielded a maximum profit, price is
lowered to appeal to the usuals
examples: books, movies, gadgets.
2013-18 Kosmas Marinakis, HSE

"Special-edition" pricing
* Enthusiasts are willing to pay more for the good than usual
customers
* The seller can take advantage of those consumers by
releasing two versions of the product
An expensive "special-edition"
A cheaper "basic version"
* Those who really care will go for the special edition - those
who do not really want to pay much will go for the simple
one.
O2013-18 Kosmas Marinakis. HSE
m2 - Lecture 7

| Peak-load pricing |
| :--- | :--- |
| * For some products demand may be uneven
 High at some particular times/periods (peak periods)
 Low at some other times/periods |
| * Capacity constraints may also cause marginal costs to |
| be higher at periods of high demand |
| * Profit maximization implies that the firm will charge higher |
| prices during peak periods |
| * Examples: hotels, gyms, cinemas, electricity |

Two-part tariff pricing
* Form of pricing in which consumers are charged both an
entry fee and a usage fee
* The entry fee, A, is charged upfront for right to use/buy
the product
* An additional usage fee, p is charged for each unit the
consumer wishes to consume Example: Night clubs, mobile service, personal printers, bowling alleys A is renting the shoes and p is the price of each bowling game. o $2013-18$ Kosmas marinakis, HSE \quad m2 - Lecture 7

| The two-part tariff |
| :--- | :--- |
| * The pricing scheme is then $A+p q$ |
| * Pricing decision is setting \boldsymbol{A} and \boldsymbol{p} to maximize profit |
| * First, no matter how you chose A and p, you cannot make |
| consumers pay above their reservation price |
| thus, there is a trade-off between A and p |
| * If consumers are similar, the firm can capture the entire CS |
| similar means that their demand curves look the same. |

Heterogeneous consumer types
* Assume now that we have two types of consumers
each type has a different demand
* The firm cannot identify types and will set only one
combination of $\left(A^{*}, p^{*}\right)$.

Second-degree PD Two-part tariffs

More than 2 consumer types

* With more than 2 types, there is no easy way to determine exactly the optimal p^{*} and A^{*}
* Let $n(A)$ be the number of entrants
n is a function of $A(d n / d A<0)$
* Revenue is

$$
R(A, p)=n(A) \cdot A+n(A) \cdot p \cdot \bar{q}
$$

* Notice the trade-off as A^{*} increases:
- Less revenue from sales, $\partial(n(A) \cdot p) / \partial A<0$
- Ambiguous change in revenue from entry, $\partial(n(A) \cdot A) / \partial A \lesseqgtr 0$.
O 2013-18 Kosmas Marinakis, HSE m2 - Lecture 7

WARNING

This printout is provided as a courtesy, so that lecture time can be dedicated to note taking. These slides are not standalone material and should be used strictly as reference, side by side with notes taken in the lecture. Studying solely from the slides is not recommended and might in some cases mislead those who have not attended the relevant lecture. Less than 5% of tasks in tests and exams can be answered from the slides.

