

Strategic decisions	Games
* Game theory tries to determine optimal strategy for each	
player	
* Strategy is a rule or plan of action for playing the game	
players usually have a set of available strategies	
* Optimal strategy for a player is one that yields the	
maximum expected payoff	
* We consider players who are rational	
they think through their actions.	
m2 - Lecture 12	

Noncooperative vS. Cooperative games
* In a Cooperative game players negotiate binding contracts that allow them to plan joint strategies example: a joint venture by two firms (i.e., HSE and NES)
* In a Non-cooperative game negotiation of binding contracts
between players is not possible because agreements are
not possible or are not allowed
example: two competing firms, assuming each-other's behavior, independently determine pricing and advertising strategy to gain market share.
a $2013-18$ Kosmas marinakis, HSE

Games		
* A Game is any situation in which the participants (players) make strategic decisions		
* For example		
Firms competing with each other by setting prices, - Individuals bidding against each other in an auction		
* Strategic decisions result in payoffs to the players: outcomes that generate rewards or penalties .		
O 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 12	2

Strategic interaction
* In a game, your payoff depends on both Your actions
Your opponents' actions
If you want to maximize your payoff, you should take your opponent's actions into account when you make your own decision
* Thus, it would be very useful for you to understand what is
the optimal response of your opponent .
© 2013 -18 Kosmas Marinakis, HSE

Information structure in games		
* Games of complete information		
Everyone knows the structure of the game (opponents, rules, set of actions, payoffs)		
- Players may ignore some past actions by rivals		
- Example: poker		
* Games of perfect information		
- Everyone knows the full history of actions by rivals		
- Players may ignore the rules or the full set of possible payoffs		
- Example: competing firms' objectives		
O 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 12	6

	Games
Timing in games	
\& Static games (one-shot games) games where all players announce their strategies simultaneously	
* Repeated games	
\quad games where interaction is repeated more than once	
* Dynamic games	
games where players move sequentially \ldots	

Choosing strategies
* A strategy may dominate another strategy, independently of what the opponent does * Someone is giving you for free one of the following: An admission at the university of your choice 1 million dollars 100 thousand dollars * A dominated strategy is one that is sub-optimal to another dominated strategies are irrelevant for the game * A dominant strategy is one that is optimal independently of what the opponent does O2013-18 Kosmas Marinakis, HSE \quad m2 - Lecture 12

Payoff matrix

Games without a DE
* The optimal decision of a player without a dominant
strategy will depend on what the other player does
* Now each player is concerned about the decisions of other
players
* Altering the payoff matrix from the previous example, we
can see a situation where no dominant strategy exists .
O2013-18 Kosmas Marinakis, HSE

The Nash Equilibrium revisited
* In many games, there are no dominated strategies
* A more general equilibrium concept is the Nash
Equilibrium, which we used in oligopoly
NE: A combination of strategies from which no player has an
incentive to deviate unilaterally
* At the NE each player is doing its best, given the actions of
its opponents
* Cournot equilibrium is an instance of Nash Equilibrium
\quad each firm sets output assuming the other firm's outputs are fixed
* Is the NE a stable equilibrium?
o $2013-18$ Kosmas marinakis, hSE m2- Lecture 12

Equilibrium concepts
* DE
"I am doing the best I can no matter what you do - you are
doing the best you can no matter what I do"
* NE
"I am doing the best I can given what you are doing - you are
doing the best you can given what I am doing"
* DE is a special case of NE. .
O2013-18 kosmas Marinakis, HSE
m2 - Lecture 12

Static games		
The Prisoners' Dilemma		
* The most famous example in game theory is		
Prisoners' Dilemma		
- Bonnie and Clyde are accused of committing a crime		
- They are both arrested and placed in separate cells		
- Each has been asked to confess to the crime		
- A confession will make the work of the prosecutor easier, so, she is offering them a deal to make them confess.		
© 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 12	15

Static games Prisoners' Dilemma			
Prisoners' Dilemma - offer			
	Clyde		
	Confess	Deny	
- Confess	-5, -5	-1, -10	
¢ Deny	-10, -1	-2, -2	
* The offer of the prosecutor to each prisoner is - If you confess and your partner does not, you get 1 year and your partner 10 - If you both confess, you get 5 years each - If you both deny, you get 2 years each.			
Q 2013-18 Kosmas Marinakis, HSE	m2 - Lecture		16

The "sidewalk" game				Static games
		P2		
		LHS	RHS	
	LHS	1,1	0,0	
	RHS	0,0	1,1	
* There might be more than one NE * Which one is the outcome of the game? * Depends on -Where the game begins from, or - How initial perceptions are formed.				
		ecture 12		18

BMW vS: Benz: product choice problem
* BMW and Mercedes each wish to introduce a new type of
vehicle in the market
\& Either a Compact Utility Vehicle (CUV) or
\& A Compact Cabriolet (Cabrio)
* Firms will be better off if they introduce a different type of
vehicle
\quad Because the demands in those markets are still small and
cannot accommodate two competing sellers
• Plus firms need to sell a high quantity to reach their MES
* Decisions are non - cooperative .
o 2013-18 kosmas Marinakis, HsE

			Static games	BMW vs. Benz
Product choice problem				
Mercedes				
		CUV	Cabrio	
3	CUV	-6, -6	12, 10	
0	Cabrio	10, 12	-5, -5	
If BMW hears that Mercedes is introducing a CUV, its best action is to produce a Cabrio Bottom left corner is Nash equilibrium What is other Nash Equilibrium?				
O 2013-18 Kosma	akis, HSE	m2 - Lecture		20

WARNING

This printout is provided as a courtesy, so that lecture time can be dedicated to note taking. These slides are not standalone material and should be used strictly as reference, side by side with notes taken in the lecture. Studying solely from the slides is not recommended and might in some cases mislead those who have not attended the relevant lecture. Less than 5% of tasks in tests and exams can be answered from the slides.

