

Static games Mixed strategies Mixed strategies Sometimes the best strategy is not a pure strategy * Players have to do randomization * * That is, to play a mixed strategy assign a probability to every available strategy * Example: 30% up; 20% middle; 50% down; * The actual strategy that will be played is chosen from the mix randomly based on the assigned probabilities * A combination of mixed strategies is a NE equilibrium if no player has an incentive to change the mix of probabilities unilaterally

3

m2 – Lecture 13

2013-18 Kosmas Marinakis, HSE

Repeated games * Consider a static game which is repeated again and again * Oligopolistic firms often play a repeated game they compete for more than one periods

- * When games are repeated, two important things may happen:
 - 1. Players have a chance for *retaliation*
 - 2. Players can develop reputations

2013-18 Kosmas Marinakis, HSE

Repeated games Repeated games Sustainability of non-Nash outcomes **Pricing problem** PlavStation * The firms can decide to collude Low price High price implement an outcome better than the NE (but not a NE) <u>100</u>, -50 **10**, 10 Low price * Collusion is not stable High price **-50**, <u>100</u> **50**, 50 players have an *incentive to deviate* (cheat) * NE implies that they both set low prices * If a player decides to cheat, he can get away with a higher * Collusion is better than NE but there is incentive for profit for that period cheating **★** BUT, starting *from the next period*, the player who was it is even better for a firm to set a low price while the other firm cheated upon will retaliate by choosing his NE strategy sets a high price * Collusion may be sustained if the game is repeated firms might adopt a *tit-for-tat strategy* 2013-18 Kosmas Marinakis, HSE © 2013-18 Kosmas Marinakis HSE m2 – Lecture 13 9 m2 – Lecture 13

Repeated games Indefinite repetition ★ What if the game is <u>infinitely repeated</u>? * Competitors repeatedly set price every period, forever * Tit-for-tat strategy makes sense * If a player cheats: • The other player will be playing the Nash strategy, forever The <u>cheater</u> will get high profits for that period but from the next one will be getting much less * The threat of retaliation is *credible* and may *prevent*

m2 – Lecture 13

12

8

10

Sub-game Perfect NE

© 2013-18 Kosmas Marinakis, HSE

★ In the previous product-choice game we *split* the game into sub-games

Dynamic games

19

- * Then we found the NE in *every* sub-game
- * Sub-game Perfect NE (SPNE): A combination of strategies which is a NE *in every subsequent sub-game* that includes this combination
- ★ We will use the SPNE as the *basic* equilibrium *notion* in dynamic games

m2 – Lecture 13

The first-mover advantage

- In the previous product-choice game, there is a clear advantage to moving first
- In quantity competing oligopoly there is the same advantage
 - The firm which goes first can choose a large level of output, thereby forcing the second firm to choose a small level

Dynamic games

20

◆ Compare Cournot vs. Stackelberg

© 2013-18 Kosmas Marinakis, HSE m2 – Lecture 13

Dynamic games How to make the first move * Demonstrate commitment * If BMW wants to move first it has to commit An announcement that it will produce a CUV is *not enough* ευχαριστώ! It can invest in expensive advertising campaign (thank you!) ◆ Place a large order of CUV tires and... send invoice to Mercedes * Commitment must be serious enough to induce f Kosmas Marinakis Mercedes to make the decision BMW wants it to make (A) www.kmarinakis.org kmarinakis@hse.ru (@) kosmas_marinakis Kosmas Marinakis A t.me/kosmas teaching @Kos_Marinakis © 2013-18 Kosmas Marinakis, HSE m2 – Lecture 13 21

