

$$
\begin{aligned}
& \text { Mixed strategies } \\
& \hline \text { * Sometimes the best strategy is not a pure strategy } \\
& \text { * Players have to do randomization } \\
& \text { * That is, to play a mixed strategy } \\
& \quad \text { assign a probability to every available strategy } \\
& \text { * Example: } 30 \% \text { up; } 20 \% \text { middle; } 50 \% \text { down; } \\
& \text { * The actual strategy that will be played is chosen from the } \\
& \text { mix randomly based on the assigned probabilities } \\
& \text { * A combination of mixed strategies is a NE equilibrium if no } \\
& \text { player has an incentive to change the mix of probabilities } \\
& \text { unilaterally. }
\end{aligned}
$$

© 2013-18 Kosmas Marinakis, HSE m2 - Lecture 13

Static games					
Rock - Scissors - Paper					
		Player B			
		Rock	Scissors	Paper	
<		0,0	1,-1	-1, 1	
$\stackrel{\text { ¢ }}{\text { ¢ }}$	Scissors	-1,1	0,0	1,-1	
믐	Paper	1,-1	-1,1	0,0	
* There is no NE in pure strategies no combination of strategies that some player does not want to deviate unilaterally from * Then, what is the best strategy (equilibrium) for this game?					
Q 2013-18 Kosmas Marinakis, HSE			ture 13		2

Mixed strategies NE in R-S-P
* In the R-S-P game the NE is in mixed strategies randomize (or mix) all strategies with probability $1 / 3$ * At the NE, both players will be doing the best they can given what their opponent is doing * If you play any other strategy or mixture, your rival may realize it and play accordingly to take advantage of you * What happens if you play $1 / 2$ Rock and $1 / 2$ Scissors? your opponent will keep playing Rock and you will never win!. o $2013-18$ Kosmas marinakis, HSE m2 - Lecture 13

			Static games	Mixed strategies
Methodology				
P2				
		C	D	
	A	0,1	1,0	
	B	1,0	0, $\underline{2}$	
* For P1: $\quad q \quad 1-q$				
$\begin{aligned} & E \Pi_{A}=0 \cdot q \\ & E \Pi_{B}=1 \cdot q \\ & \star \text { For } \mathrm{P} 2: \end{aligned}$		$\begin{aligned} & =1 \\ & =q \end{aligned}$	$\Rightarrow 1-q=$	$q \Rightarrow q=\frac{1}{2}$
$\begin{aligned} & E \Pi_{C}=1 \cdot p \\ & E \Pi_{D}=0 \cdot p \end{aligned}$		$\begin{aligned} & =p \\ & =2 \end{aligned}$	$\Rightarrow p=2$	$2 p \Rightarrow p=\frac{2}{3}$
© 2013-18 Kosmas Marinakis				$\hat{6}$

Repeated games		
Sustainability of non-Nash outcomes		
* The firms can decide to collude implement an outcome better than the NE (but not a NE) * Collusion is not stable players have an incentive to deviate (cheat) * If a player decides to cheat, he can get away with a higher profit for that period * BUT, starting from the next period, the player who was cheated upon will retaliate by choosing his NE strategy.		
Q 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 13	9

| Indefinite repetition |
| :--- | :--- |
| * What if the game is infinitely repeated? |
| * Competitors repeatedly set price every period, forever |
| * Tit-for-tat strategy makes sense |
| * If a player cheats: |
| \& The other player will be playing the Nash strategy, forever |
| \quad The cheater will get high profits for that period but from the |
| \quad next one will be getting much less |
| * The threat of retaliation is credible and may prevent |
| players from cheating |
| if the cheating payoff is exceeded by the NPV of future |
| collusion payoffs. |
| o 2013-18 Kosmas Marinakis, HSE |

Finite repetition
* What if the game is repeated a known finite number of times?
* Lets take things from the end
\& In the last period there is no possibility of retaliation, thus,
everyone will cheat
Yes, but if everyone cheats in the last period, there is no fear
of retaliation to the second to last period
So, there is no possibility of retaliation for any period
* The threat of retaliation is not credible
collusion is not sustainable.

Repeated games		
Cooperation in repeated games		
* Cooperation is at best difficult		
\checkmark Conditions may change in the long-run		
- Need a small number of firms		
- Need stable demand and cost conditions		
* Sometimes, a firm might have a legitimate reason to lower price and avoid to do it		
fear that such action may be misunderstood and push accidentally the trigger		
Q 2013-18 Kosmas Marinakis, HSE	m2 - Lecture 13	14

Dynamic games		
Sequential games		
* In sequential games players move in turns, responding to each other's actions and reactions - Ex: Stackelberg model - Responding to a competitor's ad campaign - Entry decisions.		

BMW vs. Benz - revisited Dynamic games BMWvs. Benz				
		Mercedes		
		CUV	Cabrio	
3	CUV	-6, -6	12, 10	
0	Cabrio	10, 12	-5, -5	
* If both firms announce their decisions independently and simultaneously, they may both lose money * What if Mercedes sped up production and introduced a new model first? - Now there is a sequential game - BMW will have to produce the opposite of what Mercedes produced.				
© 2013-18 Kosma	akis, HSE	m2 - Lecture 13		16

Sub-game Perfect NE

* In the previous product-choice game we split the game into sub-games
* Then we found the NE in every sub-game
* Sub-game Perfect NE (SPNE): A combination of strategies which is a NE in every subsequent sub-game that includes this combination
* We will use the SPNE as the basic equilibrium notion in dynamic games.

The first-mover advantage
* In the previous product-choice game, there is a clear advantage to moving first * In quantity competing oligopoly there is the same advantage - The firm which goes first can choose a large level of output, thereby forcing the second firm to choose a small level \& Compare Cournot vs. Stackelberg.
© $2013-18$ Kosmas Marinakis, HSE

WARNING

This printout is provided as a courtesy, so that lecture time can be dedicated to note taking. These slides are not standalone material and should be used strictly as reference, side by side with notes taken in the lecture. Studying solely from the slides is not recommended and might in some cases mislead those who have not attended the relevant lecture. Less than 5% of tasks in tests and exams can be answered from the slides.

