Kosmas Marinakis, Ph.D.

Economics & Society

Lecture 7

Macroeconomic Aggregates & Global Inequality

Macroeconomics

- * We will now focus on the economy as a whole
- * Macroeconomics is the study of aggregate economic activity
- * Macroeconomics is a relatively *new field*:
- ▶ Before 1915 aggregate economic activity was measured *indirectly* through proxy variables such as transportation tonnage
- ▶ Modern economies have sophisticated systems and accounts measuring the level of aggregate economic activity.


Introduction

USA

Jap

1980 1990 2000 2010

* In this lecture, we will explore the *measurement* of the aggregate economic production and we will examine why it differs among countries,

Macroeconomic policy

- * As we have already seen, at the <u>market level</u>, *regulation* and government *intervention* can *affect the economic outcomes*
- At a <u>macroeconomic level</u>, *policy* can affect economic activity, too:
 Growth policies can *augment* economic development in the L-R
 Stabilization policies can *stimulate* economic activity, *shorten recessions* and
- alleviate unemployment in the S-R. * On the other hand, corruption or sloppy policy can undermine economic
- prosperity * One of the **basic concerns** of Macroeconomists is how **bad policy** can be **avoided** in the future

2040 20 Kerner Madadda CMU

Economic crisis

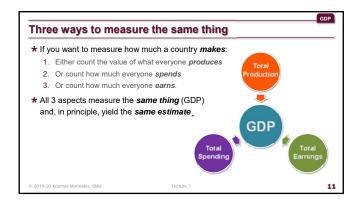
7

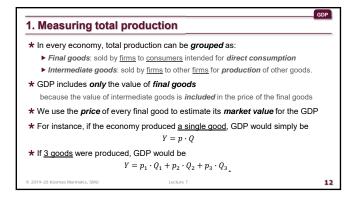
- ★ The period from 2007 to 2009 signified the *world financial crisis*
- * The <u>U.S. economy</u> shrank by 4.3 percent and the unemployment rate rose from 5% to 10%
- Meanwhile, a chain of contagion started towards the rest of the world and especially Europe
 - stock market crashes, collapsing housing prices, mortgage defaults and bank failures

8

GDP

10


* <u>Greece</u>, <u>Cyprus</u>, <u>Ireland</u>, <u>Portugal</u> experienced the *devastating consequences* of the contagion as their weak economies *could not withstand* the pressure


GROSS DOMESTIC PRODUCT

GDP

- * GDP stands for Gross Domestic Product
- It measures the market value of the goods and services produced within the borders of a country during a year
- * GDP is *denoted* by Y
- * GDP has many aspects, and thus, it is referred to with many terms Y, GDP, total production, total output, total income, aggregate expenditure
- ★ GDP is measured in *monetary terms* yet, GDP *is not* money
- * There are 3 different approaches for *measuring* GDP

2019-20 Kosmas Marinakis, SMU

2. Measuring aggregate expenditure

- * An alternative way to measure the GDP is from the spending side
- * GDP is produced by firms and then sold to consumers instead of appraising the production we can sum the revenue from sales
- In the economy of 3 goods, when those goods are finally sold, the expenditure by consumers will be:

 $p_1 \cdot Q_1 + p_2 \cdot Q_2 + p_3 \cdot Q_3 = Y$

- * The *expenditure* by consumers must *equal the value* of production by the firms * Even when some goods are *not sold within the year*, their value will be
- registered as *inventory* and be written as *expenditure* by the firm

2019-20 Kosmas Marinakis, SMU

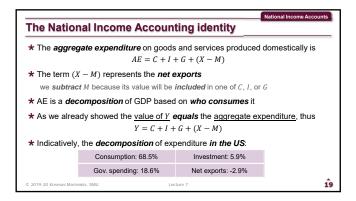
3. Measuring total income

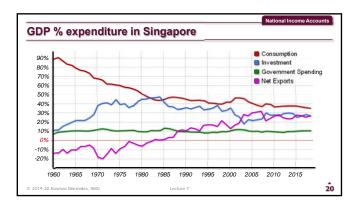
13

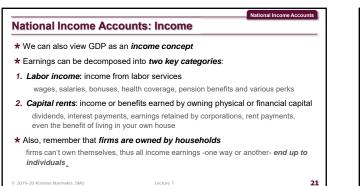
GDP

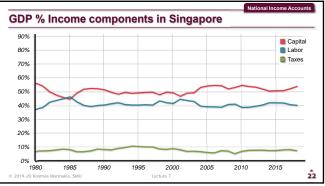
National Inc

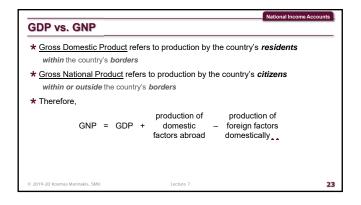
- * A *third alternative way* to measure GDP is to count the *income* it brings to the households
- In the 3-good economy, total income will be the sum of:
 Salaries for workers: w
 - <u>Profits</u> for firms: $p_1 \cdot Q_1 + p_2 \cdot Q_2 + p_3 \cdot Q_3 w$
- ★ Thus, the total value of income received by workers and owners of firms is w + (p₁ · Q₁ + p₂ · Q₂ + p₃ · Q₃ - w) = Y every dollar of spending will <u>either</u> go to some worker or be retained by some firm
- owner as profit

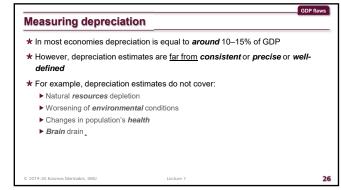

14


★ Hence, total GDP can be equivalently measured by adding the incomes of workers and capitalists in the economy_




National Income Accounts: Production * The production-based national income accounts sum up each domestic firm's value added to the production: Value added Firm A researches car technology and licenses it for \$4,000 per vehicle \$4.000 Firm B produces the car *components* and sells them for \$16,000 per car \$12,000 Firm C assembles the components to a car and sells it for \$19,000 per car \$3.000 ▶ Firm D advertises and sells the car for \$23,000. \$4,000 \$23,000 ★ The *total value* of production by A, B, C and D is \$23,000 the $4K, 16K and 19K are <math display="inline">\emph{included}$ in the 23K value of the final good * In the *calculation* of GDP from the side of production we can: • Either include ONLY the value of the final good (the 23K) ► Or sum ONLY the value added by each firm: 4K + 12K + 3K + 4K = 23K 17


	penditure-based NIAs measure the <i>purchases</i> of goods and services oduced in the economy in <i>five categories</i> :				
•	Consumption (C): the value of goods and services bought by domestic household excluding spending on residential construction				
2.	 Investment (I): the value of new physical capital bought by domestic firms plus inventories and residential construction 				
3.	Government spending (G): the value of <u>aovernment</u> purchases of goods and services excluding transfer payments and interest on government debt				
4.	Exports (X): the value of domestic production sold abroad				
5.	Imports (M): domestic expenditure for goods produced abroad				



Not included in GDP - capital depreciation * Physical capital depreciation is the reduction of the value of physical capital due to obsolescence or wear and tear * Most productive processes cause *capital to lose value*: ► Machinery wears down ► Electronic equipment gradually becomes obsolete ▶ Resources deplete * A meaningful calculation of production should subtract depreciation from the value of total production governments measure depreciation in national accounts, though they do not subtract it when calculating GDP

Home production

- * GDP does not include home production
- * Making a cake at home is not included in GDP buying the same cake at the store is included
- * Excluding home production from GDP is surely *a flaw* but we do not yet have a way to measure home production
- * The problem of measurement is mostly practical:
 - ▶ There is no documented market transaction
 - ▶ There is no formal process of *price* or *quantity appreciation*
- * An estimated 15% value on top of GDP takes place at home food preparation, household maintenance, childcare, housework etc.

The underground economy

* The underground economy refers to transactions that are intentionally hidden from the authorities for two reasons:

GDP flaws

28

GDP flay

30

- 1. Legal transactions that happen under the table for tax evasion reasons, immigration status or personal reasons the handyman who asks to be paid in cash etc.
- 2. Illegal transactions that cannot take place officially drug dealing, prostitution, bribes etc.
- * In developed countries underground economy is around 10% in developing countries it may exceed 50%
- * Ireland, Italy, Greece, the UK and other countries have recently started counting illicit activities in GDP

Leisure * Leisure is a definitive component of *happiness* and *well-being* but is *not* * Externalities -negative or positive- are usually omitted from GDP included in GDP * GDP counts the value of the product but *fails to subtract* byproducts, residuals, pollution, noise, health problems * In time-use surveys, people *report* that they are *happiest* when they have free time to socialize * Often negative externalities count as positive contributors to GDP * Residents of different countries work at different levels of intensity * For example, industrial production creates water pollution in the area, which * The cost and the quality of leisure differs from country to country necessitates the use of water filters by residents: The value of the water filters should count as *damage* from the negative externality * GDP tells us how many *material goods* are being produced by an economy ▶ Yet, it is *added* to the GDP (like every other good) making it to *appear larger*. but it does not tell how those goods contribute to the happiness of the citizens

29

GDP flaws

25

GDP flaws

27

0 2019-20 Kosmas Marinakis, SMU

Negative externalities

2019-20 Kosmas Marinakis, SMU

External video D

In this video by THE HILL, Krystal Ball and Saagar Enjeti discuss their view of how "the metrics prosper – but the people suffer". What is happiness and how can it be measured? A masterpiece of journalism for you to watch and see how it compares to your opinion.

Inequality

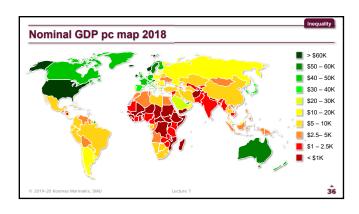
- * We live in a world of significant disparities standards of living, educational opportunities, health services, and infrastructure differ tremendously across countries
- ★ On average your *citizenship* plays a key role to the resources available to you
- * Macroeconomics provides a useful conceptual framework for studying why such disparities exist
- * Here we will attempt to explain how we can *measure differences* in *standards* of *living* across countries_

2019-20 Kosmas Marinakis, SMU

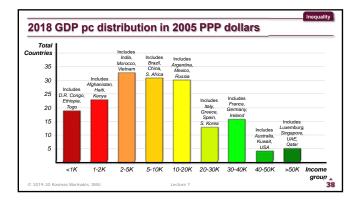
GDP per capita

31

Inequality


33

- * <u>China</u> has a GDP of \$13.67 <u>Switzerland</u> has a GDP of only \$0.77 yet, the average <u>Chinese</u> is way poorer than the average <u>Swiss</u> national
- * When making cross-country comparisons, it makes sense to *compare income per individual*

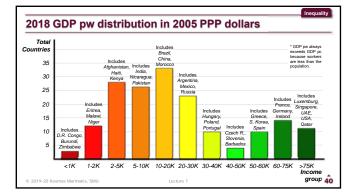

Inequality

- * Dividing GDP by the country's population yields the GDP per capita
- * Still, GDP pc values across countries are not directly comparable we have to convert GDP pc to the same currency
- * The current exchange rate serves currency trading purposes but does not translate well the value of production across countries
- * Economists use the **PPP conversion** to normalize international values

GDP	pc 2018 for se	lected cou	untries	_	
1	Luxembourg	\$114,234	24	Japan	\$39,306
2	Switzerland	\$82,950	25	Italy	\$34,260
3	Norway	\$81,695	28	S. Korea	\$31,346
4	Ireland ?!	\$76,099	30	Kuwait	\$30,839
6	Qatar	\$70,780	39	Greece	\$20,408
7	Singapore	\$64,041	60	Russia	\$11,327
8	USA	\$62,606	63	Malaysia	\$10,942
10	Australia	\$56,352	67	China	\$9,608
16	Germany	\$48,264	68	Turkey	\$9,346
18	Canada	\$46,261	81	Thailand	\$7,187
19	France	\$42,878	96	Iran	\$5,491
20	UK	\$42,558	141	India	\$2,036
21	Israel	\$41,644	186	S. Sudan	303

GDP per worker

- * Total population includes *children*, the *elderly*, and the *unemployed* these groups are the *non-work-force* population
- * Also, in some countries safety nets or social reasons allow people to drop out of the labor force for extended amounts of time maternity, illness, re-training, homemaking social norms etc.

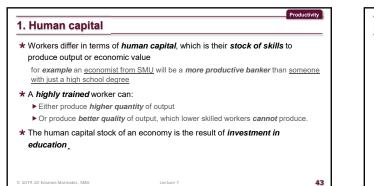

Inequality

39

- * Are cross-country GDP variations *due to differences* in the non-labor-force populations?
- * To test for this possibility we can compare cross-country GDP per worker, instead of GDP per capita

GDP pw is a better measure for the productivity of labor

2019-20 Kosmas Marinakis, SMU



Productivity

- * The *main reason* why income per capita varies across countries is *labor* productivity
- * Productivity is the value of goods and services a worker produces per hour of work
- ★ <u>GDP per worker</u> and <u>productivity</u> are very *closely related*
- * To understand the huge *differences in productivity* across countries we must look at the *production side*

we need to study the *factors* that *make <u>labor</u> much more productive* in some countries than in others

© 2019-20 Kosmas Marinakis, SMU

2. Physical capital

2019-20 Kosmas Marinakis. SMU

- Physical capital is any good used for production machines, equipment, software, buildings and miscellaneous infrastructure
- * Aggregate production *will depend* on the physical capital and infrastructure
 * In macro, we mostly see physical capital as *the means to enable* the human
- capital to be more productive
- * Skilled or unskilled workers will be more productive when the economy has a larger or better physical capital stock

44

enabling each worker to work with *more* or *superior equipment* and structures.

3. Technology

Productivity

- * An economy with better **technology** uses its labor and capital *more efficiently* and thus achieves higher productivity
- An economy can have better technology.
 <u>Either</u> because of superior knowledge about the production process
- ▶ <u>Or</u> because of *superior organization* of the production process

