

Lecture 3

Cost, Supply & Competitive Markets

Economics
& Society

Kosmas Marinakis, Ph.D.

1

Cost, Supply & Competitive Markets

Lecture 3

3

18

Perfect Competition

> PC

- ★ We have discussed how consumers **choose optimally** and how firms think about **production** and **cost**
- ★ Now, we will examine how consumers and firms **interact**
- ★ Let's start from an **ideal environment** of competition
- ★ A market is perfectly competitive when **3 assumptions** hold:
 1. There exists a **large number** of sellers
 2. The product is **homogeneous**
 3. There are **no barriers** for sellers and buyers to participate in the market.
- ★ Let's examine these assumptions **one by one**

© 2019-23 Kosmas Marinakis, SMU

Lecture 3

19

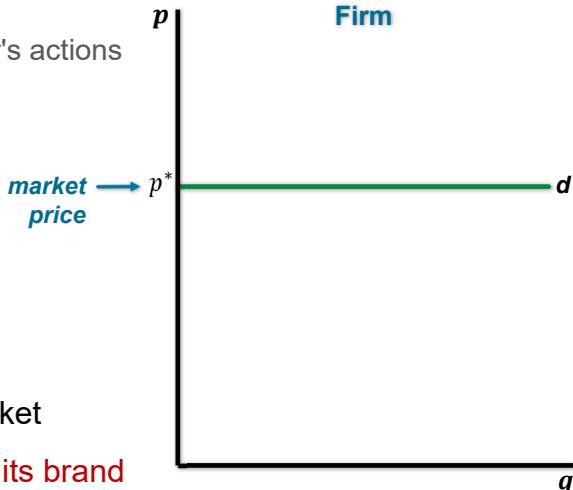
19

1. Large number of firms

> PC > Assumptions

- * **How large** is “a large number of firms”?

enough, so firms **do not care** for each other's actions


- * When firms are many, each holds a **tiny market share**

- * If a single firm **increases** its price
nobody will buy from that firm

- * If a single firm **decreases** its price
it will just lose money

- * The PC firm **takes its price** from the market

- * Thus, the PC firm, views the **demand** for its brand as a “**fixed price**”

© 2019-23 Kosmas Marinakis, SMU

Lecture 3

20

20

2. Product homogeneity

> PC > Assumptions

- * All brands of the product have **small or big differences**

- * It is NOT the **physical differences** among brands that matter

BUT what the consumer **believes** for each brand:

- ▶ If consumers cannot tell the difference, products are **homogeneous**
- ▶ If consumers find any meaningful difference, they are **heterogeneous**.

- * **Brand names** that can effectively charge higher prices

because they may be **perceived** as better
cannot be considered under the PC model

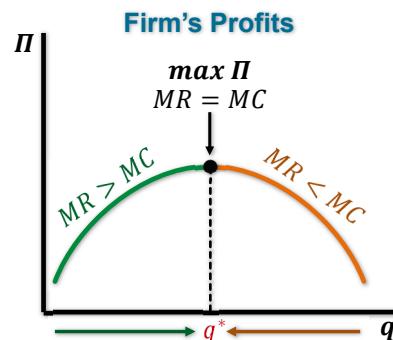
© 2019-23 Kosmas Marinakis, SMU

Lecture 3

21

21

3. Free entry and exit


> PC > Assumptions

- * In PC, market **entry** or **exit** must have **no restrictions** (barriers)
no one should be **prohibited** or **prevented** from becoming a seller
- * This **does not imply** that a PC seller does not face **fixed costs**
fixed costs can be considered a barrier only when they are **high enough** to prevent most potential sellers from entering the industry
- * Markets that **resemble** a PC environment can be:
stock markets, online marketplaces, farmers markets, hawker centers etc.

Generalized profit maximization condition

> PC > Choice of quantity

- * Profit (Π) is defined as the **difference** of **revenue** (R) and **cost** (C): $\Pi = R - C$
- * The **problem** each firm must solve is: "at **which q** is my profit maxed?"
- * For quantities q , where the revenue from each unit (MR) exceeds its cost (MC)
these units **add to profit**
- * For quantities q , where the cost of each unit (MC) exceeds the revenue from it (MR)
these units **decrease profit**
- * The **optimal q** is when $MR = MC$:
 - ▶ Usually **denoted q^***
 - ▶ Same under **any market structure**

Profit maximization in PC !

> PC > Choice of quantity

- * In every market, the seller **maximizes** profit when

$$MR = MC$$

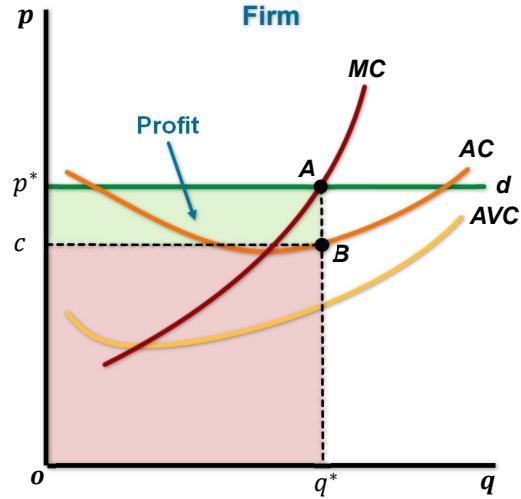
- * In **PC**, **revenue from every extra unit** (MR) **IS** the **market price**

- So, the **profit maximizing condition** becomes

$$p = MC$$

- * In other markets, firms may have the **power to set** different price for each q :

- So, **MR is NOT** the market price
 - Profit maximization condition **remains** $MR = MC$



Choosing output: Short-run

> PC > Short-run

- To maximize profit, the individual PC firm **will produce** the quantity (q^*) for which $p = MC$:

- Total revenue is $p^* \times q^*$ (area $p^* A q^* o$)
- Cost per unit is c
- Total cost is $c \times q^*$ (area $c B q^* o$)
- Total profit is $p^* A B c$

© 2019-23 Kosmas Marinakis, SMU

Lecture 3

26

26

Losses & shutdown

> PC > Short-run

- A firm produces **chairs**:

- **Capital** is leased for \$120 / day for 1 year
- **Labor** costs \$80 / day and the worker can make 10 chairs a day.

* Cost per chair is: $AC = \frac{\$120}{10} + \frac{\$80}{10} = \$20$

- * If $p = \$11$, should the firm **shut down**?:

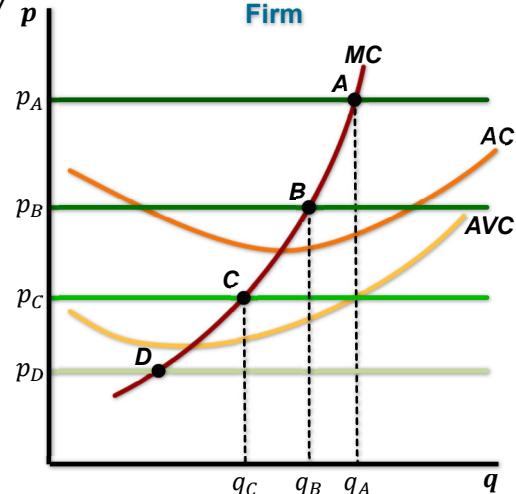
- The firm makes operating loss of $\$20 - \$11 = \$9$ per chair or **\$90** per day
- Shut down losses are **\$120** per day
- When p is below AC (\$20) but above AVC (\$8)

- * If $p = \$7$, operating losses would be $\$20 - \$7 = \$13$ per chair or **\$130** per day:

- Shut down losses still are **\$120** per day
- When p is below AVC (\$8)

© 2019-23 Kosmas Marinakis, SMU

Lecture 3


27

27

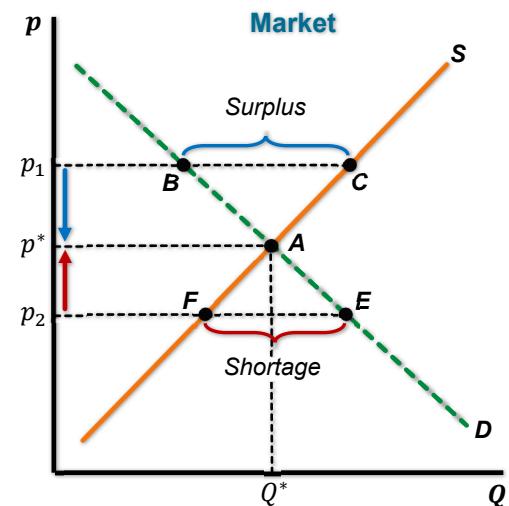
S-R supply curve

> PC > Short-run

- * The **supply curve** for a PC firm answers: "how p much q it will produce for every possible p ?"
- * PC firms always **set quantity** where $p = MC$:
 - ▶ For price p_A , firm produces q_A
 - ▶ For price p_B , firm produces q_B
 - ▶ For price p_C , firm produces q_C
- * For every given price, quantity supplied is **on the MC**
- * The PC firm's **supply curve** is the portion of the **MC** curve above the **AVC** curve

© 2019-23 Kosmas Marinakis, SMU

Lecture 3


28

28

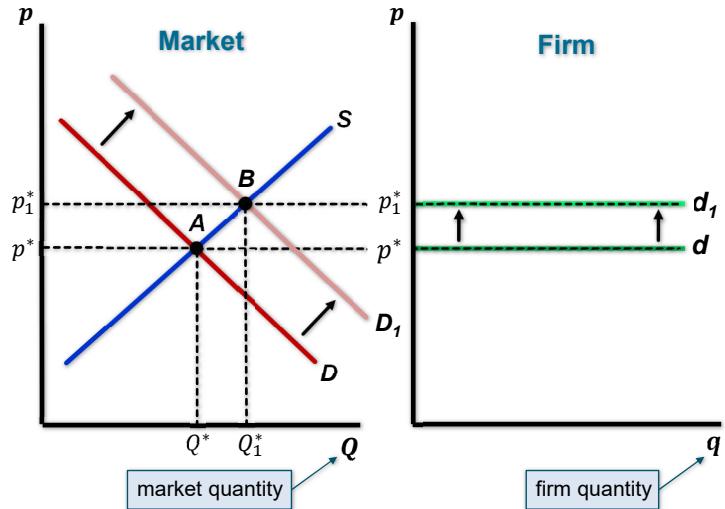
Market price in PC

> PC > Market price

- * The price in PC results from the **interaction** of market demand and market supply
- * YET firms **may know** their supply but **ignore** the position of the market demand had they **not ignored** D, they would **price** at p^*
- * If firms price at p_1 , production (p_1C) **exceeds** quantity demanded (p_1B), firms will take this as a **signal** to **lower the price**
- * If firms price at p_2 , quantity demanded (p_2E) **exceeds** production (p_2F), firms will take this as a **signal** to **raise the price**

© 2019-23 Kosmas Marinakis, SMU

Lecture 3


29

29

Market demand vs. Firm demand

> PC > Market price

- * p^* is determined in the **market**
- * Every firm takes p^* as **given**
- * If, say, the product becomes **more popular**
 - Demand increases to D_1
 - **Market price** becomes p_1^*
 - Firms who **still sell** at p^* will start experiencing **shortages** and **take the hint** that price must increase to p_1^* ..

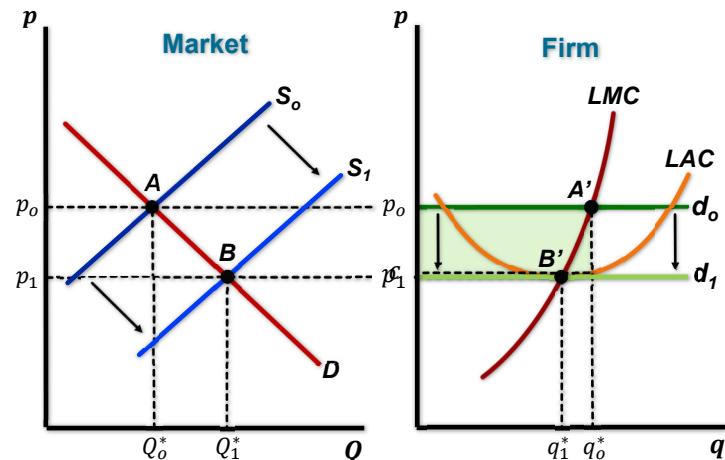
© 2019-23 Kosmas Marinakis, SMU

Lecture 3

30

30

PC: L-R PERIOD



31

PC in the long-run: profit

> PC > Long-run

- * In the S-R, firms may earn **profits**
- * **S-R profits**, will **attract** new firms in the L-R:
 - The entry of new firms will **increase** market supply
 - Price will **drop**
 - Till profit will be **eliminated**...

PC in the long-run: losses

> PC > Long-run

- * In the S-R, firms may have **losses**
- * **S-R losses**, will **push** some firms **out** in the L-R:
 - The exit of firms will **decrease** market supply
 - Price will go **up**
 - Till losses are **eliminated**...

★ In the L-R, the PC market will **equilibrate** once **entry** or **exit stops**

★ This will happen when every PC firm in the market **earns $\Pi = 0$**

S-R profits vanish because of **entry**, NOT because of doing business poorly

★ When $\Pi = 0$, the owner **still earns** their opportunity salary

thus, they have **no reason to exit** [see PS3-q3]

★ Zero L-R profit simply means that **profit opportunities** do not last forever

unless there is *innovation, differentiation, or barriers of entry* ..

Thank you!

(you are welcomed to stay for consultation or discussion)

⚠ **WARNING!** ⚠

The slides in this handout are created with the intention to serve a visual aid for the audience during the live presentation of the material in the lecture. As such, **they are not designed to be standalone reading material** and should be used strictly as **reference**, side by side with notes taken in the lecture. Studying solely from the slides **is not recommended** and might in some cases **mislead** those who have not attended the relevant lecture. **Less than 20% of tasks in test and exam can be answered solely from the slides.**